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Abstract

Intellectual disability (ID) and Autism Spectrum disorder (ASD) are the most common 

developmental disorders present in humans. Combined, they affect between 3-5% of the 

population. Additionally, they can be found together in the same individual thereby complicating 

treatment.

The causative factors (genes, epigenetic and environmental) are quite varied and likely interact so 

as to further complicate the assessment of an individual patient. Nonetheless, much valuable 

information has been gained by identifying candidate genes for ID or ASD. Understanding the 

etiology of either ID or ASD is of utmost importance for families. It allows a determination of the 

risk of recurrence, the possibility of other comorbidity medical problems, the molecular and 

cellular nature of the pathobiology and hopefully potential therapeutic approaches.
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Introduction

Intellectual disability (ID) and Autism Spectrum Disorders (ASDs) are major social 

problems in all countries. Each, individually, have a rather high prevalence, with ID 

affecting 1-3% of the population and ASDs is found in 1/50 school age children (Perou et 

al., 2013). Both conditions are heterogeneous, thereby posing an immense challenge to the 

clinical geneticist in search of a diagnosis for the patient and their family in need of genetic 

counseling to determine recurrence risks.

Intellectual disability is a condition characterized by below average intellectual functioning 

(IQ<70) in conjunction with significant limitations in adaptive functioning. Intellectual 

disability may occur as an isolated phenomenon or accompanied with malformations, 

neurological signs, impairment of the special senses, seizures and behavioral disturbances. 

Autism spectrum disorder comprises a group that includes autistic disorders, Asperger 

syndrome, pervasive developmental disorder not otherwise specified (PDD-NOS) and Rett 
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Syndrome (American Psychiatric Association, 2000). Patients with ASDs share features of 

restrictive and repetitive behaviors, dysfunctional reciprocal social behavior, and impaired 

communication abilities (Wilkins and Matson, 2009).

Besides the heterogenecity of ID and ASDs, they are extremely likely to be related 

biochemically and molecularly. Both exist together in the majority of patients. Seventy 

percent of individuals with ASDs have some level of ID while the remaining 30% have 

some disability (speech, behavior) other than cognitive dysfunction (Mefford et al., 2012; 

Newschaffer et al., 2007; Wilkins and Matson, 2009). Conversely, at least 10% of 

individuals with ID have ASDs, with some ID conditions exhibiting a much higher level of 

co-morbidity.

The genetic causes for ID and ASDs are quite varied and similar. Single gene mutations, as 

well as copy number variants (CNVs), either duplications or deletions, are associated with 

both conditions. Additionally, hypomorphic alterations in multiple genes suggesting an 

oliogenic mode of inheritance have recently been noted for both conditions. Recently, large-

scale whole exome sequencing (WES) studies found that no single gene was significantly 

associated with ASD risk. Rather a likely contribution of rare risk variants scattered across 

hundreds of genes was speculated (Anney et al., 2012; Liu et al., 2013). The same mutation 

or CNV gives rise to either ID or ASDs and variations within a large number of these genes, 

for example, NRXN1, CNTNAP2, NLGN4, SHANK2 and SHANK1, have been found to be 

associated with ID as well as ASD (Berkel et al., 2010; Sato et al., 2012; Kim et al., 2008; 

Laumonnier et al., 2004; Zweier et al., 2009). These observations further substantiate the 

involvement of similar cellular and molecular processes and indicate the role of environment 

and genetic background plays in the expression of ID (Figure 1) and probably ASD.

Many rare and inherited mutations in ASD-associated genes often display incomplete 

penetrance. Most pathogenic mutations in the known ASD-associated genes and in a 

majority of ID genes have a very low prevalence in their respective patient populations. 

Thus the diagnostic application and understanding of the molecular mechanisms underlying 

ID and ASD remain limited.

Much time and effort by multiple groups throughout the world have been devoted to 

identifying specific genetic causes for ID and ASDs. As a result of these efforts, at least 400 

genes have been found to be associated with each of these entities (reviewed in van 

Bokhoven 2011). However, it is highly probable this number only represents a minor 

proportion of genes involved. For examples, with respect to ID, 400 genes may account for a 

fourth of the genes involved based on the number of known X-linked intellectual disability 

genes is presently about 100, and the X chromosome accounts for about 1/20 of the human 

genome.

It is hypothesized that primary causative factors (monogenic causes, epigenetic and 

environmental factors or other as yet unidentified causative factors) do not directly result in 

cognitive impairment. Rather, the mutant genes or other primary causative factors directly or 

indirectly cause metabolic disruptions, altered neurodevelopment and interference in cell 

proliferation and/or migration, which then lead to the brain abnormalities that result in 
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cognitive and behavioral disabilities. It is likely that common groups of genes, proteins and 

metabolites or a combination of these are affected in either a majority or subset(s) of ID 

patients.

Although screening of patients with ID or ASD has indeed identified viable candidate genes 

involved in these phenotypes, the process is laborious and, as already mentioned, quite 

incomplete. The number of genes is vast and the number known small. Components of 

common interaction networks and biological processes associated with these genes/proteins 

are likely critical and unique to normal cognitive and behavioral function. Therefore other 

approaches have been undertaken to better understand the etiologies of these conditions. 

One very productive approach has been that of system biology. Kou et al (2012) used a 

combined network and systems biology approach to predict candidate genes for ASD and 

ID. Their results were quite interesting in that they were able to slow both conditions shared 

common pathways and had similar clusters of genes which was comforting as this was not 

unexpected based on the accumulating evidence alluded to before. Importantly, using these 

interconnected pathways, as one begins to understand ID one may then also better 

understand ASD and visa versa.

Cristino et al. (2013) used a similar network approach, a hypothetical ‘gene network model’ 

based on candidate genes and associated protein – protein interaction networks, to build 

protein modules containing about 4,000 genes which might contribute to 

neurodevelopmental and neuropsychiatric disorders. Their data were in agreement with 

previous approaches in their identification of molecular pathways, functional domain and 

gene regulation. However, their findings also contained some novel insights. Their analysis, 

by including variants identified in genome wide association studies found regulatory regions 

for transcription factors (TF) and miRNA, located in the 5’ upstream regulatory regions and 

the 3’ UTR of genes. These, in turn, identified candidate genes and miRNA target sites. At 

the end, Christino et al. (2013) found that the TFs in a network regulated other genes in the 

network and the genes were enriched for miRNA sites.

Genes Linked to ID and ASD

Functional categorization of proteins encoded by a majority of ID and ASD-associated 

genes and elucidation of common pathways has become crucial not only for the 

understanding of cellular and molecular mechanisms underlying pathophysiology of these 

genes but also in assessing the potential pathogenicity of new candidate genes for ID and 

ASD. Such a functional categorization has led to emergence of diverse cellular functions 

influencing neuronal structure and functions that are affected by defects in the ID and ASD 

genes. For example, successes in delineating the molecular basis for XLID have led to the 

elucidation of genetic mechanisms for specific XLID disorders and provided valuable 

insights into fundamental aspects of neuronal function that are involved in normal 

development of human cognition. These functions include but are not limited to 

transcription and translation regulation, protein modification, chromatin remodeling, actin 

cytoskeleton assembly involving neurite outgrowth, and cellular processes including RNA 

splicing, translation, energy metabolism, transport of small molecules, nonsense mediated 

decay of mRNA, and disturbances in ubiquitination. Furthermore, the identification of 
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interacting partners of ID and ASD gene products and targets of known ID and ASD genes 

has led to the elucidation of specific pathways linked to ID and ASD. Many ID and ASD 

genes appear to convergence onto common pathways. One common theme that has emerged 

recently is that a significant number of ID and ASD-linked proteins are synaptic molecules 

and directly or indirectly affect structure and function of neurons, more specifically 

dendrites and synapses.

Several classes of molecules participating in various cellular processes and thus regulating 

neuronal morphology and communication are found to be critical for normal cognition and 

behavior function and defects in these molecules cause ID and ASD. These include 

molecules present at synapses and regulating synaptic vesicle transport, neuronal 

cytoskeleton dynamics, maintaining synaptic contacts such as cell surface receptors, cell 

adhesion molecules, postsynaptic density proteins, molecules influencing transcriptional 

regulation and chromatin remodeling, and molecules involved in maintaining synaptic 

protein level are found to be major factors in the causation of ID. Here we will focus on ID 

and ASD-associated molecules, pathways and abnormal cellular processes affecting 

neuronal morphology and function (Table 1). Figure 2 exemplifies the complexity of the 

synaptic compartments illustrating the selected molecules and pathways implicated in ID 

and ASD.

Neuronal morphology, synaptic plasticity and cognitive disorders

In the human brain, processing and transmission of information in the form of electrical 

signals are carried out by a trillion (1012) neurons and a quadrillion (1015) synapses. 

Synapses are adhesive junctions highly specialized for mediating communication between 

neurons in the brain. Most of the chemical synapses consist of three components: 

presynaptic axon terminals, a synaptic cleft, a gap of 20-25 nm between pre-and 

postsynaptic compartments, and postsynaptic dendritic regions (Bourne and Harris, 2008; 

Ho et al., 2011). Most neurons consist of morphological distinct regions such as single axons 

harboring presynaptic terminals that represent the information output centers and several 

dendrites bearing synapses, both excitatory and inhibitory, representing centers for 

information input. The dendrites of most neurons are covered with small protrusions known 

as dendritic spines. Structurally, spines have a long thin neck and a head that contains the 

excitatory synapse (Bourne and Harris, 2008). The inhibitory synapses are predominantly 

formed on the neuronal cell bodies and dendritic shafts (Bourne and Harris, 2008).

Communication at synapses involves the release of chemical neurotransmitters from the 

presynaptic terminals in response to electrical impulses (i.e. action potentials), diffusion 

across the synaptic clefts, and binding to postsynaptic receptors (Cesca et al., 2010; Ho et 

al., 2011). The postsynaptic compartment in turn converts these chemical signals back into 

action potentials, allowing their propagation. The presynaptic terminals contain synaptic 

vesicles filled with neurotransmitters and a dense matrix of cytoskeleton and scaffolding 

proteins at the site of neurotransmitter release, the active zone (Ho et al., 2011; Waites and 

Garner, 2011). A wide-variety of cell-adhesion molecules holds pre- and postsynaptic 

regions together at the proper distance through trans-synaptic interactions (Missler et al., 

2012). Spines and synapses are highly dynamic in their morphology and can undergo rapid 
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structural changes in response to stimuli. This property is called synaptic plasticity. Changes 

in the morphology of spines underlie long-term potentiation (LTP) and long-term depression 

(LTD), two processes that model the activity-dependent changes of synaptic strength and 

which are considered to represent the cellular basis of learning and memory.

Synapse formation is a highly complex process, which is orchestrated in a precise temporal 

and spatial manner during early development and in adult brain. Development of synapses 

can be divided into four specific steps: neurite outgrowth i.e. axons need to find their targets 

cells, and dendrites need to be elaborated to provide target fields for synapse formation; 

contact between axonic presynaptic terminals and dendrites’ postsynaptic terminals; synapse 

elimination that refines the accuracy of circuit formation/neuronal connectivity patterns; and 

finally the functional balance between excitatory and inhibitory synapses is modulated 

through regulation of both synapse number and function. Synaptic connectivity that is 

regulated by the formation and elimination of synapses is found to be critical for learning, 

memory and behavior function in the developing and adult brain.

The current understanding of the cellular and molecular mechanisms of neuronal 

morphology and synaptic transmission has come from studies on the hippocampal and 

cortical pyramidal neurons. Subtle changes in dendritic or synaptic structure can ultimately 

lead to enormous changes in information processing. Recent evidence suggests that dendritic 

branches and spines are key regulators of neuronal function and essential for the formation 

and plasticity of neuronal circuits, and are disrupted in many neurodevelopmental disorders 

such as ID and ASD in which behavioral and intellectual functions are affected (Auerbach et 

al., 2011; Durand et al., 2012; Holtmaat and Svoboda, 2009; Hutsler and Zhang, 2010; Jan 

and Jan, 2010; Kaufman et al., 2010; Sudhof, 2008; Tsai et al., 2012; Valnegri et al., 2012).

A large body of evidence indicates dysfunction of the synapse (synapse formation and 

plasticity) and dendrites as major contributing factors in ID and ASD. A consistent feature 

of neurons in patients with ID is abnormal dendritic structure and/or alterations in dendritic 

spine morphology (Blanpied and Ehlers, 2004; Huttenlocher, 1974; Irwin et al., 2001; 

Kaufmann and Moser, 2000; Purpura, 1974). Post-mortem analysis of human ID brain tissue 

often shows dendritic spines with altered shapes and densities. Altered spine morphology 

has been observed in post-mortem cortical tissue from patients with ASD (Hutsler and 

Zhang, 2010). Defects in dendritic spine morphology are also consistently found in mouse 

models for several ID and ASD genes (Belichenko et al., 2004; Clement et al., 2012; 

Comery et al., 1997; Wang et al., 2011). Most of the ID/ASD-related proteins have been 

shown to be enriched at pre- and/or postsynaptic compartments and have been found to 

affect both dendrite and spine structures in number and morphology linked to the control of 

neuronal structure and connectivity (Humeau et al., 2009). The finding of many 

independent, individually rare genetic variants in synaptic proteins implicates a role of 

synaptic cell-adhesion pathways in cognitive and behavior function (Betancur et al., 2009; 

Glessner et al., 2009; Valnegri et al., 2012). Recently, a role for ubiquitination and protein 

degradation in synaptic function and neurodevelopmental disorders such as ID and autism 

has also been identified (Mabb and Ehlers, 2010). Many genes from the ubiquitin pathway 

and neuronal proteins that are targeted by the unbiquitin-proteasome system have been 

linked to cognitive defects (Glessner et al., 2009; Lehman, 2009; Salinas et al., 2006). It is 
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further evident that multiple ID- and ASD-associated genes are involved in activity-

dependent synapse elimination that refines the accuracy of neuronal circuit formation 

(Pfeiffer et al., 2010; Tsai et al., 2012). Studies involving many of the synaptic genes have 

shown the significance of any causal rare variant in ID or ASDs (Gilman et al., 2011). A 

network-based analysis of genes affected by rare de novo CNVs in autism suggested that 

perturbed dendritic morphogenesis and synaptogenesis are the key to autism (Gilman et al., 

2011). Several studies suggest that the changes in neuronal gene expression controlled by 

selective expression of transcription factors affect the formation of dendritic spines and 

synapses (Ben-David and Shifman, 2012; Ebert and Greenberg, 2013; Voineagu et al., 2011; 

West and Greenberg, 2011).

Regulation of cytoskeleton dynamics

The structure and dynamics of dendrites and spines have been shown to be influenced by the 

underlying actin-cytoskeleton. The cytoskeleton forms the backbone of neuronal 

architecture and is critical for axon outgrowth and synapse formation. Once synapses have 

been formed, the neuronal cytoskeleton supports their maintenance and maturation and thus 

the synaptic cytoskeleton is essential for stabilization and remodeling of synaptic 

connections (Dent et al., 2011). Actin filaments are the predominant cytoskeletal element in 

dendritic spines whereas actin and microtubules constitute cytoskeleton of dendrites 

(Fifkova and Delay, 1982; Hoogenraad and Bradke, 2009; Matus et al., 1982). Both 

formation and reorganization of spines are accompanied by dynamic rearrangements of actin 

filaments (Matus, 2000; Rex et al., 2010). Inhibition of actin polymerization attenuates LTP 

maintenance, whereas LTD is associated with actin filament disassembly (Okamoto et al., 

2004). Signaling molecules and pathways that regulate actin-cytoskeleton organization have 

a major impact on the structure and function of dendrites and spines. Key molecules 

mediating changes in these structures are actin-binding proteins and members of the family 

of small Rho GTPases such as, RhoA, Rac, and Cdc42 (Hotulainen and Hoogenraad, 2010). 

These proteins play important roles in synaptic functions, dendritic branching, dendritic 

spine formation and maintenance, and neurite outgrowth and differentiation.

Rho GTPases function as molecular switches, cycling between an inactive GDP-bound state 

and an active GTP-bound state. The activity is regulated by positive regulators (guanine 

nucleotide exchange factors, GEFs), negative regulators (GTPase activating proteins, GAPs) 

and by guanine nucleotide disassociation inhibitors (GDIs) (Ba et al., 2013; Govek et al., 

2004). Several genes implicated in ID and ASD code for proteins associated with GTPase 

signaling and function as regulators or effectors of Rho GTPases or Rac and Cdc42. These 

genes include OPHN1, MEGAP, OCRL1, ARHGEF6, ARHGEF9, FGD1, LIMK1, PAK3, 

and IQSEC2.

The ID gene OPHN1 encodes oligophrenin 1, a Rho GTPase activating protein (Rho-GAP), 

expressed both pre- and postsynaptically in neurons e.g. in axons, dendrites and spines and 

plays role in the activity-dependent maturation and plasticity of excitatory synapses by 

regulating their structural and functional stability (Nadif Kasri et al., 2009). Oligophrenin 1 

was found to negatively regulate RhoA and interact with the post-synaptic protein Homer 

and knock-down of oligophrenin-1 levels in CA1 neurons in rat hippocampal slices resulted 
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in significantly decrease spine length (Govek et al., 2004). Recently it was shown that 

synaptic activity through NMDA receptor activation drives OPHN1 into dendritic spines, 

where it forms a complex with AMPA receptors, and selectively enhances AMPA-receptor 

mediated synaptic transmission and spine size by stabilizing synaptic AMPA receptor, 

suggesting that normal activity-driven glutamatergic synapse development is impaired by 

perturbation of OPHN1 function (Nadif Kasri et al., 2009).

PAK3, an XLID protein, is a member of the large family of p21-activating kinases (PAK), 

which are downstream effectors for Rac and Cdc42 (Allen et al., 1998; Kreis et al., 2007; 

Rousseau et al., 2003). Activation of PAK by Rac1 or Cdc42 leads to the activation of 

LIMK1, which in turn phosphorylates and inactivates cofilin, a crucial modulator of actin 

dynamics (Arber et al., 1998; Edwards et al., 1999). Down regulation of PAK3 results in 

morphological spine abnormalities, including an increased proportion of abnormally 

elongated, thin and immature spines, and variable defects in synaptic plasticity (Boda et al., 

2004; Dubos et al., 2012; Meng et al., 2005). PAK3-knockout mice have impaired synaptic 

plasticity and cognitive function, and mice lacking LIMK1, a gene considered to be 

causative for the neurological features of Williams-Beuren syndrome with mild-severe ID, 

showed abnormalities in synaptic function and impaired fear conditioning and spatial 

learning (Meng et al., 2005; Meng et al., 2002). Recent studies showed that PAK3 is 

specifically recruited in the spine head of activated spines. Additionally, researchers found a 

small reduction of PAK3 in the nearby dendrite as opposed to more distal parts of the 

dendrite. This result therefore suggests that the redistribution of PAK3 relieves its negative 

action on spine growth in the nearby dendrite and thereby promotes a local formation of new 

spines, as seen with PAK3 inhibition (Dubos et al., 2012).

Other ID proteins, FGD1, ARHGEF9 (collybistin) and ARHGEF6 (αPIX) are GEFs. 

ARHGEF9 and FGD1 are specific for Cdc42, while ARHGEF6 activates both Rac1 and 

Cdc42. ARHGEF9, which encodes a Cdc42 GEF protein collybistin, is specifically enriched 

in neuronal dendrites, and involved in the formation of inhibitory synapses (Kneussel et al., 

2001a; Kneussel et al., 2001b; Papadopoulos et al., 2007; Tyagarajan et al., 2011). 

Collybistin is essential for the clustering of the postsynaptic scaffold protein gephyrin and 

along with Cdc42 regulates GABAergic postsynaptic densities (Korber et al., 2012; 

Tyagarajan et al., 2011). ARHGEF6, which was initially isolated as a PAK interacting 

protein, localizes specifically at the post-synaptic compartment of excitatory synapses 

(Node-Langlois et al., 2006). Knockdown of the rat Arhgef6 in cultured hippocampal 

neurons resulted in abnormalities in spine morphology similar to those reported with 

knockdown of PAK3. This phenotype could be rescued by a constitutively active form of 

PAK3 (Node-Langlois et al., 2006). Arhgef6 knockout mice exhibited an increase in both 

dendritic length and spine density, accompanied by an overall loss in spine synapses and 

showed a dramatic reduction in the levels of the active Rac1 and Cdc42 in the hippocampus 

(Ramakers et al., 2012).

IQSEC2 is a guanine nucleotide exchange factor for the small GTPase, ADP-ribosylation 

factor 6 (ARF6), which localizes to the postsynaptic density of excitatory synapses 

(Shoubridge et al., 2010a; Shoubridge et al., 2010b). ARF6 is known to regulate endosomal 

trafficking and actin dynamics (D'Souza-Schorey and Chavrier, 2006; Grant and Donaldson, 
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2009). ARF6 mediates mobilization of TLN (TLN/intercellular adhesion molecule-5 

(ICAM5)), which localizes to dendritic filopodia. The endocytosis of TLN affects filopodia-

to-spine transition, and requires Rac1-mediated dephosphorylation/release of actin-binding 

ERM proteins from TLN (Raemaekers et al., 2012).

Presynaptic vesicle cycling and exocytosis

Formation of a chemical synapse requires exchange of organizing signals between the 

synaptic partners. Pre- and postsynaptic specializations form in precise opposition to each 

other at sites where axons contact specific target cells. Neurotransmitters such as glutamate 

or ρ-aminobutyric acid (GABA) are made by the presynaptic neurons and stored in synaptic 

vesicles at presynaptic terminals. A critical step in presynaptic differentiation is the 

clustering of synaptic vesicles near neurotransmitters release sites, the active zone, where 

vesicle fusion and exocytosis of neurotransmitters occur (Sudhof, 2004). Several presynaptic 

molecules involved in the regulation of synaptic vesicle release that involves a multistep 

process including, vesicle endocytosis (transport/mobilization), docking, priming, fusion, 

and recycling, have been identified and are found to be defective in ID and ASD.

The synapsins (Syns) are a family of neuron specific phosphoproteins, which localize in the 

presynaptic compartments and interact with each other, actin and with the cytosolic surface 

of SVs (reviewed in Cesca et al. 2010) They help maintain a reserve pool of vesicles by 

tethering SVs to each other and to actin to regulate the availability of SVs for release 

through their phosphorylation-dependent dissociation from SVs and actin and to play a role 

in the post docking step of exocytosis (Baldelli et al., 2007; Chi et al., 2001, 2003; 

Chiappalone et al., 2009). SYN1 mutations are associated with epilepsy and/or autism 

(Fassio et al., 2011; Giannandrea et al., 2013). Neurons from single or multiple Syn 

knockout mice show impairment in inhibitory neurotransmission and enhancement in 

excitatory transmission, accompanied by alteration in synaptic plasticity. A selective 

decrease in the density of SVs is noted in nerve terminals i.e. presynaptic compartments. It 

was noted that in the absence of Syns, SVs show higher mobility and become dispersed 

along axons (Fornasiero et al., 2012; Orenbuch et al., 2012). Lack of Syn1 and/or Syn11 

triggers a strong epileptic phenotype in mice associated with cognitive impairments (Greco 

et al., 2013).

αGDI (GDP-dissociation inhibitor), an XLID protein, encoded by the GDI1 gene, controls 

the cycling of RAB GTPases that act as molecular switches between the active GTP-bound 

and inactive GDP-bound state and are involved in intracellular vesicle trafficking (Takai et 

al., 2001). GDI1 knockout mice exhibit a large decrease in the reserve pool of SVs and 

short-term memory deficit (Bianchi et al., 2009; Bianchi et al., 2012). Mutations in another 

small GTPase gene, RAB39B, cause XLID associated with autism, epilepsy, and 

macrocephaly (Giannandrea et al., 2010). Its downregulation leads to an alteration in the 

number and morphology of neurite growth cones and a significant reduction in presynaptic 

compartments and supports the importance of the intracellular trafficking mediated by the 

αGDI-RAB pathway in cognitive and behavioral function.

The most critical step of exocytosis, SV fusion with the presynaptic membrane, is mediated 

by the SNARE (soluble N-ethymalemide sensitive factor attachment protein receptor) 
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complex composed of three SNARE proteins, syntaxin, SNAP-25, and synaptobrevin and 

Munc18-1 (Pevsner et al., 1994; Sollner et al., 1993). Munc18-1 is encoded by the STXBP1 

gene that is found to be mutated in cases with nonsyndromal ID and ID with epilepsy 

(Hamdan et al., 2011; Milh et al., 2011). Munc18-1 has been ascribed a variety of functions 

in exocytosis and has been shown to promote vesicle priming, SNARE complex assembly, 

trafficking of syntexin1 to the plasma membrane, by preventing the formation of ectopic 

SNARE complexes (Kong et al., 2013; Smyth et al., 2013; Zhou et al., 2013).

Defects in IL1RAPL1 have been associated with ID and autism (Bhat et al., 2008; Carrie et 

al., 1999; Piton et al., 2011; Piton et al., 2008). IL1RAPL1 belongs to the Toll/IL-1 Receptor 

family and interacts with neuronal calcium sensor-1 (NCS-1) and inhibits calcium-

dependent exocytosis, neurotransmitter release and NGF-induced neurite elongation (Bahi et 

al., 2003; Gambino et al., 2007). Pavlowsky and coworkers identified PSD-95 as a novel 

partner of IL1RAPL1 and showed that it regulates dendritic spine number and PSD-95 

localization to excitatory synapses by controlling c-jun terminal kinase (JNK) activity and 

PSD-95 phosphorylation (Pavlowsky et al., 2010a; Pavlowsky et al., 2010b).

Through trans-synaptic interaction with presynaptic protein phosphatase (PTP) δ, 

IL1RAPL1 has been found to mediate synapse formation (Yoshida et al., 2011). Recently, 

IL1RAPL1 has been shown to interact with Mcf2-like (Mcf2l), a Rho guanine exchange 

factor, through the cytoplasmic Toll/IL-1 receptor domain and regulates the formation and 

stabilization of glutamatergic excitatory synapses of cortical neurons through RhoA 

signaling (Hayashi et al., 2013).

Synaptic vesicle recycling is required for effective synaptic transmission. The family of 

adaptor protein (AP) complexes, AP-1, AP-2, AP-3 and AP-4, mediates various types of 

vesicle formation (Robinson, 2004). Adaptor protein complexes are evolutionary conserved 

hetrotetrameric complexes that mediate different types of vesicle formation and the selection 

of cargo molecules for inclusion into these vesicles. Synaptic vesicle recycling involves 

AP-2/clathrin mediated endocytosis. Mice deficient in the tissue specific AP-1-σ1A complex 

showed impaired synaptic vesicle recycling in the hippocampal synapse (Glyvuk et al., 

2010). Mutations in genes encoding AP4 complex subunits (AP4B1, AP4E1, and AP4S1) 

have been identified in patients with ID, progressive spastic paraplegia, shy character, and 

short stature (Abou Jamra et al., 2011). Mutations in AP4M1 and AP4E1 have recently been 

found in patients with cerebral palsy associated with severe ID (Abou Jamra et al., 2011; 

Kong et al., 2013; Moreno-De-Luca et al., 2011)

In addition, SYP, which encodes synpatophysin, an integral membrane protein found in 

transport vesicle and interacts with synaptobrevin, an essential component of SNARE 

complex, is found to be mutated in cases with nonsyndromal ID and ID with epilepsy 

(Tarpey et al., 2009). At the presynaptic site, reduced or defective OPHN1 signaling has 

been shown to impair synaptic vesicle (SV) cycling at hippocampal synapses. It forms a 

complex with endophilin A1, a protein implicated in membrane curvature generation during 

SV endocytosis (Nakano-Kobayashi et al., 2009).
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CASK, another XLID gene, encodes a calcium/calmodulin-dependent serine protein kinase 

that is a member of the membrane-associated guanyl kinase (MAGUK) family of 

scaffolding proteins (Hackett et al., 2010; Hsueh, 2006; Najm et al., 2008). CASK binds to 

the cytoplasmic tails of the presynaptic cell adhesion molecules β-neurexin (Sun et al., 

2009). Mutations in neurexin 1 have been linked to ID. CASK also binds to the cytoplasmic 

domain of KIRREL3, a presynaptic cell adhesion molecule implicated in autosomal ID 

(Bhalla et al., 2008). The functional implication of this interaction has yet to be elucidated. 

Recently, liprin-α2, which is required for regulating synaptic vesicle pool size, has been 

shown to be critical for recruitment of several components of the vesicle release machinery, 

including CASK (Spangler et al., 2013).

Translational regulation, protein degradation and turnover

It is quite evident that synaptic proteins are critical for learning, memory and behavioral 

functions. Several studies have suggested tight regulation of protein translation and 

degradation is critical in neurodevelopment. It is well established that de novo protein 

synthesis has an important function in synaptic transmission and plasticity (Cajigas et al., 

2010). Recently, several studies have highlighted an important function for protein 

degradation by the ubiquitin proteasome system (UPS) in synaptic plasticity (Mabb and 

Ehlers, 2010; Segref and Hoppe, 2009; Tai and Schuman, 2008). These observations suggest 

that changes in synaptic transmission involve extensive regulation of the synaptic proteome.

The synaptic proteome is also affected by the nonsense-mediated mRNA decay (NMD) 

pathway that provides a translation-coupled quality control system. The NMD functions not 

only in degrading aberrant mRNAs with a premature termination codon (PTC) but also in 

regulating the transcriptome (reviewed in Nguyen et al. 2013a). Mutations and CNVs in 

several NMD-associated genes, UPF3B, UPF3A, SMG6, EIF4A3, RNPS1, and RBM8A, 

have been shown to be likely causes or predisposing factors for neurodevelopmental 

disorders such as ID, autism and ADHD. (Addington et al. 2011; Jolly et al. 2013; 

Laumonnier et al. 2009; Nguyen et al. 2012, 2013b; Tarpey et al. 2007b).

The UPS comprises a group of enzymes, an ubiquitin-activating enzyme (E1), an ubiquitin-

conjugating enzyme (E2), and an ubiquitin ligase (E3), that activates and then attaches a 76 

amino acid protein ubiquitin to lysine residues of specific substrates. Thus, ubiquitination 

post-translation ally modifies protein function and triggers the subsequent degradation of 

ubiquitinated proteins by the 26S proteasome. Various components of the multicomplex 

UPS are necessary for proper development of the brain, axon outgrowth and guidance, 

synapse development and plasticity. It has been shown that protein degradation through the 

UPS controls proper synaptic balance by maintaining optimal protein levels, thus promoting 

functional equilibrium (Bingol and Schuman, 2006; Cajigas et al., 2010; Ehlers, 2003). 

Several studies have revealed a crucial role of the UPS in the spatial and temporal control of 

protein turnover in the nervous system, which regulates the development and maintenance of 

specialized neuronal structures, and consequently , neuronal transmission. Thus, it is not 

surprising that a growing group of ID linked proteins are directly involved in UPS-mediated 

protein degradation such as UBE3A, UBE2A, UBE3B, HUWE1, MID1, CUL4B, and UBR1 

(Badura-Stronka et al., 2010; Basel-Vanagaite et al., 2012; Budny et al., 2010; Flex et al., 
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2013; Froyen et al., 2008; Hwang et al., 2011; Isrie et al., 2013; Kishino et al., 1997; 

Matsuura et al., 1997; Nascimento et al., 2006; Tarpey et al., 2007; Zenker et al., 2005; Zou 

et al., 2007).

Maternally inherited loss-of-function mutations in UBE3A cause Angelman syndrome (AS), 

a neurodevelopment disorder characterized by the absence of speech, movement ataxia, 

excessive laughter, and severe cognitive impairment (Kishino et al., 1997; Matsuura et al., 

1997). Mutations of UBE3A have also been found to be associated with ASDs (Glessner et 

al., 2009). UBE3A localizes to dendrites and spines, and its absence in mice leads to reduced 

spine density and length and defects in synaptic plasticity (Dindot et al., 2008; Yashiro et al., 

2009). UBE3A encodes an ubiquitin E3 ligase, also known as E6-associated protein (E6-

AP), containing the C-terminal HECT domain that catalyzes the ubiquitination of target 

proteins. Recently, it was shown that Ube3A regulates excitatory synapse development by 

controlling the degradation of Arc, a synaptic protein that promotes the internalization of the 

AMPA subtype glutamate receptors (Greer et al., 2010). Mice deficient in maternal Ube3A 

express elevated levels of Arc in response to synaptic activity, which coincides with 

severely impaired LTP in the hippocampus and the deficit in learning behaviors. The authors 

suggested this deregulation of AMPA receptor expression at synapse may contribute of 

cognitive dysfunction that occurs in Angelman syndrome and possibly ASDs. Recently, 

TrkB receptor signaling, which is known to be essential for both the induction and 

maintenance of LTP, was also found to be defective as result of elevated Arc levels in the 

AS mouse (Cao et al., 2013). However, a recent report suggests that Arc is not a direct target 

substrate for UBE3A and the authors provide evidence that Arc protein levels are rather 

controlled by UBE3A at the transcription rather than at posttranscriptional level (Kuhnle et 

al., 2013).

Several genes in the ubiquitin pathways, including UBE3A, PARK2, RFWD2, and FBOX40 

were found to be affected by CNVs enriched in patients with autism (Glessner et al., 2009). 

Recently, maternal duplications of the 15q11-q13 region encompassing UBE3A (Bucan et 

al., 2009) have been shown to confer a predisposition to ASD. Mice with increased dosage 

of maternally expressed Ube3a exhibit autism-related behaviors and show suppression of 

glutamatergic, but not GABAergic synaptic transmission further point to an important role 

of UBE3A gene dosage in neuronal function and its potential contribution to the autism traits 

of individuals with 154q11-q13 duplication (Smith et al., 2011). Additionally, multiple 

autism-linked genes, PCDH10, MEF2, FMRP, have recently been shown to mediate synapse 

elimination via proteasomal degradation of synaptic scaffolding protein PSD-95 (Tsai et al., 

2012).

Mutations in another ubiquitin ligase, UBE3B, a paralog of UBE3A, have been found in 

patients with blepharophimosis-ptosis-intellectual disability syndrome and Kaufman 

oculocerebral syndrome (Basel-Vanagaite et al., 2012; Flex et al., 2013) further reinforcing 

the physiological importance of ubiquitination in neuronal development and function in 

mammals. However, the substrate specificity and biological function of UBE3B have yet to 

be determined. Deficiency of the XLID gene UBE2A, which encodes an ubiquitin-

conjugating enzyme (E2) (RAD6A), has recently been shown to cause defective synaptic 

function as a consequence of mitochondrial failure in drosophila (Haddad et al., 2013). 
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Using both in vitro and in vivo ubiquitination assays, it was found that RAD6A in 

conjugation with an E3 ubiquitin liagase such as Parkin, ubiquitinates mitochondrial 

proteins to facilitate the clearance of dysfunctional mitochondria in cells (Haddad et al., 

2013). The XLID protein MID1, a microtubule-associated ubiquitin E3 ligase, facilitates 

MID1-dependent regulation of protein phosphatase 2A (PP2A). It has recently been shown 

to catalyze the polyubiquitination of alpha 4 (α4), a key regulator of PP2A and mTOR (Du 

et al., 2013). Mutations in another E3 ubiquitn ligase, HUWE1, have been found in patients 

with ID (Froyen et al., 2008). It has recently found to be essential for synchronizing 

neuronal and glial cell differentiation in the developing cerebellum (D'Arca et al., 2010). 

HUWE1-deficient mice show profound cerebellar abnormalities (D'Arca et al., 2010).

The XLID protein CUL4B is a member of the cullin family of E3 ligase complexes that acts 

as scaffold proteins and recruit specific substrates for ubiquitination and subsequent 

degradation (Badura-Stronka et al., 2010; Tarpey et al., 2007; Zou et al., 2007). Lack of 

Cul4b in mice leads to embryonic lethality (Chen et al., 2012; Jiang et al., 2012). Some 

dendritic features, including the complexity, diameter, and spine density in the hippocampal 

neurons were affected by Cul4b deletion (Chen et al., 2012). CUL4B has been implicated in 

degradation of Cdt1 (chromatin licensing and DNA replication factor 1) and camptothecin 

(CPT)-induced topoisomerase I (Topo I) (Kerzendorfer et al., 2010). Patients harboring 

CUL4B mutations-derived cells show impaired CPT-induced Top1 degradation and 

increased Top1-mediated DNA breakage (Kerzendorfer et al., 2010). Recently, CUL4B is 

found to positively regulate CDK2-CDC6 cascade promoting DNA replication licensing 

(Zhou et al., 2013). Interestingly, authors found that the upregulation of CDK2 by CUL4B is 

through the transcription repression of miR-372/373 (Zhou et al., 2013). CUL4B has also 

been shown to target WDR5, a core subunit of histone H3 lysin 4 (H3K4) methyl transferase 

complexes for ubiquitination and degradation (Nakagawa and Xiong, 2011). CUL4B 

mutations are recently found to be defective in promoting TSC2 and cyclin E degradation 

and positively regulating mTOR signaling in neocortical neurons (Wang et al., 2013). 

Activation of the mTOR pathway increases dendritic complexity (Jaworski et al., 2005; 

Kumar et al., 2005) and has been observed in mouse models of Fragile X and tuberous 

sclerosis, two important causes of ID (Ehninger et al., 2008; Sharma et al., 2010).

Cell adhesion molecules in trans-synaptic signaling: the synaptic cleft

Cell-adhesion molecules (CAMs) play critical roles in brain development, and are crucial for 

the formation initial contact between pre- and postsynaptic compartments, and functional 

maturation and maintenance of synapses (Betancur et al., 2009; Missler et al., 2012). 

Neuronal CAMs provide anchors for scaffolding proteins (Missler et al., 2012; Scheiffele, 

2003). The majority of CAMs at synaptic clefts are members of the cadherin family, 

immunoglobulin superfamilies, integrin family, as well as the neurexins and their binding 

partners, the neuroligins. Mutations in several of these neuronal CAMs are associated with 

ID and ASD or ASD susceptibility. The finding of many independent, individually rare 

genetic variants in synaptic CAMs such as CDH9, CDH10, CDH15, PTCHD1, PCDH9, 

PCDH10, PCDH19, CNTN4, CNTNAP2, KIRREL3, NLGN3, NLGN4X, NRXN1, 

SHANK2, SHANK3 implies the synaptic cell-adhesion pathways have a significant role in 

cognitive and behavioral function (Bakkaloglu et al., 2008; Berkel et al., 2010; Bhalla et al., 
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2008; Glessner et al., 2009; Jiang et al., 2013; Morrow et al., 2008; Noor et al., 2010; 

O'Roak et al., 2012; Pagnamenta et al., 2011; Pinto et al., 2010; Sanders et al., 2011; 

Vincent et al., 2012; Wang et al., 2009). However, clinical manifestations in patients do not 

always correlate with the genetic mutations in synaptic CAMs. For example, in many cases 

identical mutations have been noted in patients as well as in apparently unaffected relatives. 

This would suggest the existence of a compensatory mechanism or concomitance of other 

unknown genetic or non-genetic factors. It is also important to note that studies suggest that 

synaptic adhesion molecules might have overlapping functions or act together at synaptic 

sites as no single pair of synaptic adhesion molecules seems to be sufficient to accomplish 

all aspects of synaptic development. A large number of synaptic CAMs belong to cadherin 

(CDH) and protocadherin (PCDH) families of proteins which primarily mediate hemophilic 

adhesion to support cell adhesion. A role for cadherins in neuropsychiatric disorders has 

recently been reviewed (Redies et al., 2012).

Other synaptic CAMS belong to the neurexin and neuroligin families of proteins. The 

interaction between presynaptic neurexins and postsynaptic neuroligins, which act as a Ca2+ 

dependent cell adhesion molecules in both excitatory and inhibitory synapse formation, have 

been studied extensively. Neurexins encode two major isoforms, α (long) and β (short), 

differing in their extracellular domains. Binding of neurexins to neuroligins is mediated by 

the sixth LNS (laminin, neurexin, sex-hormone-binding globulin) domain of α-neurexin, and 

the single LNS-domain of β-neurexin (Reissner et al., 2008). Both neuroligins and neuroxin 

exhibit synaptogenic activity in cell culture assays (Chih et al., 2005; Graf et al., 2004; Nam 

and Chen, 2005; Zhang et al., 2010). However, double or triple α-neurexin knockout mouse 

exhibits a synaptic transmission defect without any impairment in synapse formation 

(Dudanova et al., 2007). Similarly, mice deficient in one or more neuroligin genes show 

normal synapse numbers but alterations in the recruitment of postsynaptic receptors to 

glutamatergic, GABAergic, and glycinergic synapses (Missler et al., 2003; Varoqueaux et 

al., 2006). Chubykin and co workers reported that different neuroligins act on distinct types 

of synapses via activity-dependent mechanisms (Chubykin et al., 2007). Interestingly, the 

Nlgn3 R451C knock-in mouse, which replicates the autism-linked human NLGN3 mutation 

(Jamain et al., 2003), exhibited impaired social interactions, enhanced inhibitory synaptic 

transmission with no apparent effect on excitatory synapses (Tabuchi et al., 2007). However, 

these observations were not replicated in a different study with independently generated 

R451C knock-in mice probably due to genetic background difference (Chadman et al., 

2008).

Intracellularly, the cytoplasmic tails of neurexins contain a PDZ-domain binding motif that 

binds to the presynaptic scaffold molecule CASK and MINT (Munc 18 interacting protein; 

lin-10), which couple neurexin signaling to synaptic vesicle exocytosis (see above). ID- and 

ASD- associated protein ProSAP2/Shank3 interacts with the cytoplasmic tail of neuroligins 

and recently, it was found that synaptic levels of ProSAP2/Shank3 regulate AMPA and 

NMDA receptor-mediated synaptic transmission and induce widespread changes in the 

levels of presynaptic and postsynaptic proteins via neurexin-neuroligin transsynaptic 

signaling (Arons et al., 2012). ASD-associated mutations in ProSAP2/Shank3 were found to 

disrupt postsynaptic AMPA and NMDA receptor signaling and also interfere with the ability 
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of ProSAP2/Shank3 to signal across the synapse to alter presynaptic structure and function 

(Arons et al., 2012).

Contactin associated proteins (CNTNAPs) are similar to neurexin. Although synaptic 

function of the ASD and ID associated CNTNAP2 is not clear, it was recently shown that 

while the wild-type protein localizes to the cell surface, some mutants had an altered cellular 

localization (Falivelli et al., 2012). A missense mutation (D1129H) showed severe 

trafficking abnormalities whereas a frame shift mutation that caused a form of syndromic 

epilepsy resulted in secreted soluble proteins suggesting that structural or signaling functions 

of the membrane tethered form are lost (Falivelli et al., 2012).

Therapeutic implications and challenges

As evident from the proceeding discussion, many known ID and ASD genes are involved in 

various physiological processes and many of these genes converge on distinct and common 

pathways altering neuronal functions (Delorme et al. 2013). Furthermore, an understanding 

of genes, pathways and associated molecular and cellular mechanisms in many cases of ID 

and ASD further provides a means for exploring therapeutic approaches in at least some 

cases of ID and ASD. Indeed, several recent studies in model systems suggest that 

neurological disorders, like Rett syndrome, Angelman syndrome, Kleefstra syndrome and 

Fragile X syndrome, are not permanent and hint at the possibility of rescuing, reversing or 

ameliorating neurological deficits (Chang et al. 2008; Dölen et al. 2010; Guy et al. 2007; 

Huang et al. 2011; Kramer et al. 2011; van Woerden et al. 2007).

However, a recent paper by Auerbach et al. (2011) highlighted at least one potential problem 

with the assumption that knowledge of pathways may have universal therapeutic benefits. 

Auerbach and co-workers showed that even though mutations in the Tsc2 gene and the Fmr1 

gene in mice resulted in LTD, Tsc2 mutations caused diminished protein synthesis while 

Fmr1 mutations caused excessive protein synthesis. As a result, each required different 

treatments to arrive at the same endpoint. Therefore, extrapolating to humans, a therapy 

designed for ASD or ID is not likely to be helpful in all cases (already known), but in fact it 

might even be deleterious for some individuals. Therefore, in depth knowledge of the 

pathway may be necessary for each patient as therapies are developed utilizing the 

information gleamed from this systems approach.

Summary

As indicated at the beginning of this chapter, the group of genes associated with either 

intellectual disability or autism spectrum disorder are involved in many of the same 

molecular and biological functions. This was not unexpected since ID and ASD are 

comorbid in many genetic entities. There is actually a rationale for this commonality of 

pathophysiology. ID and ASD are disorders of neurodevelopment. Thus, their associated 

genes likely affect the function of other genes rather than exist unconnected to other genes. 

They are involved in many molecular and biological functions (signaling, translation, 

adhesion) which are essential for normal cell function.
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The breakdown of the genes involved in ID or ASD is rather consistent regardless of how 

the list of genes is constructed (Figures 3 and 4). If one uses the 101 X-linked intellectual 

disability genes (Figures 3A, 4A) or the 705 genes associated with developmental delay 

prepared by the Greenwood Genetic Center (Figures 3B, 4B) or the 546 ASD/ID genes 

listed by SFARI (https://sfari.org/resources/sfari-gene), the percentage of genes in individual 

category are roughly similar and display similar distribution pattern. However, the most 

striking finding is that a similar analysis of all the genes in the human genome (Figures 3D, 

4D) gives essentially the same breakdown per category. Therefore, the genes involved or 

associated with ID or ASD are, in fact, not skewed towards any particular molecular or 

biological process function. Rather, the composition reflects the composition of the human 

genome. Thus, although benefit maybe gained by focusing on certain categories to identify 

candidate ID and ASD genes because they may account for a large fraction of the etiology, 

one cannot nor should ignore all categories of molecular function and biological processes. 

Once a candidate ID or ASD gene provides insight into a particular pathway, invariably a 

screen of other genes in the pathway will uncover relevant pathological mutations 

contributing to a similar phenotype. Therefore, although the mechanisms involved are 

complex, the information of the protein interactions, pathways and function provides a 

means of assisting families with patients with ID and ASD. This in turn can lead to a chance 

for therapeutic approaches which may ameliorate the ID or ASD defect in a particular 

patient.
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Figure 1. 
Etiological causes of intellectual disability. Percentages are based on the evaluation of 

15,484 individuals seen by the Greenwood Genetic Center.
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Figure 2. 
Schematic diagram illustrating the complexity of the synaptic compartments and the 

molecular architecture of excitatory and inhibitory synapses. This figure depicts a subset of 

pre- and post-synaptic proteins regulating neurite outgrowth, synapse formation/maturation, 

synapse elimination and maintenance of a functional balance between excitatory and 

inhibitory synapses. The gene products implicated in neurodevelopmental disorders such as 

ID and ASD are shown in red type. The selected molecules and pathways shown here 

discussed in the text and elsewhere (Delorme et al. 2013; Ebert and Greenberg, 2013; van 

Bokhoven 2011; Waites and Garner, 2011).
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Figure 3. 
Molecular function classification of genes associated with XLID, ID/ASD, developmental 

delay (DD), or entire human genome. Genes were classified for molecular function with 

Gene Ontology using the PANTHER genes classification tool (http://www.pantherdb.org/) 

and analyzed by the PANTHER whole genome functional analysis. GO molecular function 

category (Accession) and percent of genes hit against total number of Function hits are 

displayed as a pie chart for (A) the 101 X-linked intellectual disability (XLID) genes (total 

hits, 224), (B) the 705 genes associated with developmental delay prepared by the 

Greenwood Genetic Center (total hits, 892), (C) the 546 ASD/ID genes listed by SFARI 

(https://sfari.org/) (total hits, 796), and (D) the 18,331 human genes (total hits, 20,233).
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Figure 4. 
Biological process classification of XLID, ID/ASD, DD genes or entire human genome. 

Genes were classified for biological process with Gene Ontology using the PANTHER gene 

classification tool and analyzed by the PANTHER whole genome functional analysis. GO 

biological process category (Accession) and percent of gene hit against total # Process hits 

are displayed as a pie chart for (A) the 101 XLID genes (total hits, 227), (B) the 705 genes 

associated with developmental delay prepared by the Greenwood Genetic Center (total hits, 

1,651), (C) the 546 ASD/ID genes listed by SFARI (total hits, 1,638), and (D) the 18,331 

human genes (total hits, 37,064).
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Table 1

Selected list of ID- and ASD-associated genes regulating processes involved in neuronal morphology and 

communication

Biological Function Genes

Presynaptic vesicle cycling and transport αGDI, CASK, AP-1, AP-2, AP-3, AP-4, AP4BP1, AP4E1, AP4S1, AP4M1, IL1RAPL1, 
OPHN1, RAB39B, STXBP1, SYN1, SYN11, SYP

Cytoskelton dynamics ARHGEF6, ARHGEF9, FGD1, IQSEC2, LIMK1, OPHN1, OCRL1, MEGAP, PAK3

Cell-adhesion and trans-synaptic signaling CASK, CDH9, CDH10, CDH15, CNTN4, CNTNAP2, KIRREL3, NLGN3, NLGN4X, NRXN1, 
PTCHD1, PCDH9, PCDH10, PCDH19, SHANK2, SHANK3

Translational regulation, protein 
degradation and turnover

CUL4B, FBXO40, FMRP, HUWE1, MID1, MEF2, PARK2, PCDH10, RFWD2, UBR1, 
UBE2A, UBE3A, UBE3B, UPF3B, UPF3A, SMG6, EIF4A3, RNPS1

Neurosci Biobehav Rev. Author manuscript; available in PMC 2014 December 03.


